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Abstract

Bacterial meningitis remains an important cause of global morbidity and
mortality. Although effective vaccinations exist and are being increasingly used
worldwide, bacterial diversity threatens their impact and the ultimate goal of
eliminating the disease. Through genomic epidemiology, we can appreciate
bacterial population structure and its consequences for transmission dynamics,
virulence, antimicrobial resistance, and development of new vaccines. Here,
we review what we have learned through genomic epidemiological studies,
following the rapid implementation of whole genome sequencing that can help
to optimise preventative strategies for bacterial meningitis.

Open Peer Review

Referee Status: +" +'

Invited Referees

1 2
version 1 v v
published
27 Mar 2018

F1000 Faculty Reviews are commissioned
from members of the prestigious F1000
Faculty. In order to make these reviews as
comprehensive and accessible as possible,
peer review takes place before publication; the
referees are listed below, but their reports are
not formally published.

1 Pavla KFiZova, National Institute of Public
Health, Czech Republic

o> Thomas Benfield, Hvidovre Hospital,

University of Copenhagen, Denmark

Discuss this article

Comments (0)

Page 1 of 13


http://f1000research.com/collections/f1000-faculty-reviews/about-this-collection
http://f1000.com/prime/thefaculty
http://f1000.com/prime/thefaculty
https://f1000research.com/articles/7-401/v1
https://f1000research.com/articles/7-401/v1
https://f1000research.com/articles/7-401/v1
http://dx.doi.org/10.12688/f1000research.13793.1
http://dx.doi.org/10.12688/f1000research.13793.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.13793.1&domain=pdf&date_stamp=2018-03-27

FIOOOResearch F1000Research 2018, 7(F1000 Faculty Rev):401 Last updated: 27 MAR 2018

Corresponding author: Martin C.J. Maiden (martin.maiden@zoo.0x.ac.uk)

Author roles: Rodrigues CMC: Conceptualization, Writing — Original Draft Preparation, Writing — Review & Editing; Maiden MCJ:
Conceptualization, Writing — Original Draft Preparation, Writing — Review & Editing

Competing interests: MCJM has received grants and personal fees from vaccine companies, including GlaxoSmithKline and Novartis, outside
the scope of the submitted work. CMCR declares that she has no competing interests.

How to cite this article: Rodrigues CMC and Maiden MCJ. A world without bacterial meningitis: how genomic epidemiology can inform
vaccination strategy [version 1; referees: 2 approved] F1000Research 2018, 7(F1000 Faculty Rev):401 (doi:
10.12688/f1000research.13793.1)

Copyright: © 2018 Rodrigues CMC and Maiden MCJ. This is an open access article distributed under the terms of the Creative Commons
Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Grant information: The authors declare that this work was supported by the Wellcome Trust (grant 109031/Z215/Z to CMCR and grant
104992/Z2/14/Z to MCJM).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

First published: 27 Mar 2018, 7(F1000 Faculty Rev):401 (doi: 10.12688/f1000research.13793.1)

Page 2 of 13


http://dx.doi.org/10.12688/f1000research.13793.1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.13793.1

Introduction

Bacterial meningitis describes infection of the subarachnoid
space with bacterial pathogens, resulting in inflammation of
the brain linings (meninges), a condition that causes significant
morbidity and mortality worldwide. Bacteria reach the sub-
arachnoid space through haematogenous or direct contiguous
spread, where they replicate with resultant local meningeal
inflammation and potential for involvement of the brain tissue
(Figure 1). In addition, where haematogenous spread of bacteria
causes meningitis, persistence of bacteria in the blood, septicaemia,
can rapidly develop into multi-organ failure and death.

Depending on age, geographic location, immune system

function, and vaccine implementation, the incidence rates and
causative organisms of bacterial meningitis differ’”. In 2013,
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there were an estimated 303,500 deaths globally from meningitis,
attributed to Streptococcus pneumoniae (n = 79,100), Neisseria
meningitidis (n = 65,700), Haemophilus influenzae type b (Hib)
(n = 64,400) and other agents (n = 94,200)°. Despite highly
effective vaccination programmes against the major pathogens,
disease persists. This review will discuss what we have learned
through genomic epidemiological studies, from elucidating
transmission networks to describing bacterial biodiversity, with
the aim of improving the use of existing vaccines and novel
vaccine development.

Global burden of bacterial meningitis
Bacterial meningitis in newborns in the first seven days of

life is most commonly caused by group B streptococcus
(Streptococcus  agalactiae) and  Escherichia coli through
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Figure 1. Anatomical representation of the human brain and meningeal structures affected by bacterial meningitis. The bacteria
access the subarachnoid space from the blood, crossing the blood-brain barrier. Here, they replicate and cause inflammation as the host

attempts to control the developing infection. The ensuing inflammation
cerebrospinal fluid. Figure reproduced unchanged with permission®.

and ongoing infection result in major morbidity and mortality. CSF,
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vertical transmission from the birth canal and perineal region.
After the first week of life, cases are mainly nosocomial or
acquired via horizontal transmission, and Listeria monocy-
togenes and S. pneumoniae also contribute to disease burden™®.
Vaccination against Hib, N. meningitidis, and S. pneumoniae
has greatly altered the epidemiology of bacterial meningitis in
older children and adults over the last three decades (Table 1).
H. influenzae meningitis is now extremely rare in countries
with high uptake of the conjugate polysaccharide (Hib) vaccine,
but cases can occur in unvaccinated individuals or with non-b
serotypes. S. pneumoniae and N. meningitidis cause most
disease, with meningococcus predominating in older children
and adolescents, and pneumococcus predominating in adults.
Other causes include: L. monocytogenes in the elderly or
immunocompromised; Staphylococcus aureus co-existent with
endocarditis; and H. influenzae co-existent with otitis media or
sinusitis’*.

Bacterial diversity: carriage and immune selection
With the exception of L. monocytogenes, the bacteria principally
responsible for causing meningitis are carried asymptomati-
cally as members of a healthy microbiota. Group B streptococcus
is found in the vaginal tract of up to 20% of women, E. coli
is found universally in the gut, S. aureus on the skin, and
S. pneumoniae, N. meningitidis, and H. influenzae in the naso/
oropharynx. There are likely to be interactions between the host
immune system and the microbiota, although these are not fully
understood, that result in the structured diversity observed
in bacterial populations’. This diversity is found amongst
microorganisms of the same species, manifested as distinctive
lineages (organisms that share a common ancestor and therefore
exhibit genetic similarity) which persist through time. Even
within these lineages, bacteria vary genotypically (that is, in
their genetic constitution) and phenotypically (that is, in their
observable characteristics) with an extensive capacity to alter
protein expression states through phase variation. Thus, to
appreciate the degree and mechanisms by which these popu-
lations are structured, it is necessary to study genome-wide
variation among representative bacterial isolates. Only by
understanding the host bacterial population structure can we start
to identify the strains (bacteria that have a similar genotype and
phenotype) that cause disease.

Persistence of bacterial meningitis despite
vaccination

The diversity of S. pneumoniae and N. meningitidis challenges
the continued success of vaccines and the elimination of bacte-
rial meningitis caused by these organisms. Both bacteria exhibit
high rates of horizontal genetic transfer (HGT) and comprise
distinct, non-overlapping genetic lineages with varying degrees
of pathogenicity. Each genetic lineage, recognised by multi-
locus sequence typing (MLST) as groups of sequence types
(STs) called clonal complexes (ccs), can exhibit a variety of
polysaccharide capsular types and undergo capsule switching
(Figure 2). Until 2013, all licenced vaccines for the prevention
of bacterial meningitis pathogens were based on polysaccha-
ride capsular antigens, key virulence factors as both acapsulate
streptococci and meningococci very rarely cause invasive dis-
ease. Prevention of disease by capsular group was beneficial but
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allowed bacteria from hyperinvasive lineages that switched
capsule to persist through carriage and ongoing transmission
between hosts.

The first pneumococcal polysaccharide conjugate vaccine
included seven capsular serotypes (PCV7) and subsequently
increased to PCV10 and PCVI13 with further iterations in
development (Table 1). This was based on the serotypes most
frequently causing disease, but some capsular types were anti-
genically related, resulting in a degree of cross-protection.
With more than 90 serotypes identified worldwide, the develop-
ment of a universal vaccine remains challenging. In contrast, for
meningococci there are only 12 recognised capsular groups,
of which six serogroups cause almost all disease (Table 1).
Conjugate vaccines against serogroups A, C, W, and Y are
available but not universally used’. Until 2013, there was no
licensed vaccine against serogroup B, a major cause of meningi-
tis in industrialised countries. Hence, non-vaccine types continue
to be carried in the host nasopharynx and transmitted, poten-
tially causing disease in susceptible populations. Furthermore,
through the extensive HGT in these pathogens, newly emerging
hyperinvasive genotypes can arise. The introduction of a novel
antigenic combination can result in epidemic or hyperepidemic
disease.

Genomic epidemiology

Genomic epidemiology aims to achieve “systematic investi-
gation of how natural genomic variation affects the clinical
outcome of disease”''. The utility of this methodology in the
prevention of bacterial meningitis lies in understanding trans-
mission networks, population structure of bacterial pathogens,
and epidemiology. In combination, this can inform vaccine
development, implementation, and post-vaccine surveillance
(Figure 3)'2.

Next-generation sequencing technology

Genomic epidemiological studies are increasingly available
because of the generation of high-quality microbial genomes
with benchtop sequencers, including Illumina, Ion Torrent, and
Pacific Biosciences platforms. Portable sequencing devices,
such as the Oxford Nanopore MinlON, have been used in the
field for Ebola and Zika virus epidemics, although at the time
of writing they still had higher error rates than other next-gen-
eration sequencing technologies, of which the Illumina platform
was predominant'*'*. The multiplicity of platforms provides
flexibility in the face of diverse scale, research or clinical ques-
tions, and settings. The cost of sequencing genomes fell rap-
idly since its commercial inception, but the challenge remains in
developing bioinformatics techniques for systematic analyses,
which are inexpensive, standardised, highly reproducible world-
wide, and easily accessible to microbiologists, epidemiologists,
and clinicians alike".

Bioinformatics approaches

The most widely used sequence-based method for typing bacteria
is MLST, which uses housekeeping genes to catalogue diversity
and has been successful because of its highly discriminatory,
portable, and unambiguous results'®. Genetic lineages within
bacterial populations are still most frequently defined by MLST,
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Figure 2. Population structure of Neisseria meningitidis and Streptococcus pneumoniae carriage isolates, demonstrating the diversity
of genotype and capsular types. (a) Allele-based phylogeny of 498 N. meningitidis carriage isolates from the UK obtained in 1999, generated
by using seven multilocus sequence typing loci. Genotypes, described as clonal complexes (ccs), are shown by coloured clades on the tree
branches. Capsular group is displayed on the peripheral band, data were derived from serological typing and genotyping, and “discrepant”
isolates had non-concordant results. Phylogeny is visualised by using Interactive Tree of Life software'®. (b) Maximum likelihood phylogeny
of 616 S. pneumoniae carriage isolates from the US from 2001 and 2007, generated by using 106,196 polymorphic sites within 1,194 core
genes. Monophyletic sequence clusters are shown and labelled peripherally. Within each sequence cluster, differential shading represents
the different serotypes. SNP, single-nucleotide polymorphism. Figure reproduced unchanged with permission’.
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Figure 3. Schematic diagram demonstrating the process and utility of genomic epidemiology. Initially, microbial isolates undergo whole
genome sequencing (WGS). WGS can be assembled de novo or by mapping to a reference. Bioinformatics platforms enable the uploaded
WGS to be annotated and allow users (microbiologists, bioinformaticians, public health officials, and clinicians) to analyse the genes of
interest by visualising phylogenetic relationships and associating these with appropriate and relevant meta data. The example of outbreak
tracing is used here but this can be extrapolated to many areas of health and disease. Figure reproduced unchanged with permission’”.
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even when whole genome sequencing (WGS) data are available.
By assigning unique alleles at each locus, irrespective of whether
the alleles have arisen by individual mutations or HGT, one can
systematically index genetic diversity, regardless of the rates of
vertical or horizontal transmission'®. However, the resolution
attainable by seven MLST loci is limited by the small number
of loci indexed (Figure 2a). This can be overcome by using the
hierarchical and scalable gene-by-gene approach with assembled
WGS data”. By following the principles of MLST but employing
more loci, for example, in ribosomal MLST, core genome or
whole genome MLST, one can successively increase resolution
to identify genetic diversity (Figure 2b). Typing at other loci allows
characterisation of potential vaccine components or virulence
factors, including capsule loci, outer membrane proteins,
and antibiotic resistance-encoding genes. Alternative approaches
include single-nucleotide polymorphism (SNP) typing, where
short-read data are mapped onto a reference sequence, after
which the SNPs can be identified (SNP calling). The SNPs are
collated to reconstruct a phylogeny or into an SNP address,
identifying closely related isolate clusters within a given isolate
collection, which can be interpreted with additional epidemio-
logical data. This method can be performed rapidly, easily, and
sensitively but is dependent on specialist software, reference
genomes and sequencing platforms, which can limit portability
among sites’'.

Effective bioinformatics platforms are required to enable the
storage and analysis of WGS data. Databases that allow sharing
of WGS include the publicly available Bacterial Isolate Genome
Sequence Database (BIGSdb) platform (PubMLST.org), which
stores assembled and annotated genome data from the meningo-
coccus and pneumococcus” . This supplements resources such
as the International Nucleotide Sequence Database Collaboration,
which is composed of the National Center for Biotechnology
Information, the European Nucleotide Archive and the DNA
Databank of Japan. Global surveillance systems using standard-
ised typing methods are beginning to incorporate data derived
from sequence-based technology; some examples include
the European Centre for Disease Prevention and Control, the
European Surveillance System (TESSy) and US Centers for
Disease Control and Prevention PulseNet. In the UK, the
Meningitis Research Foundation Meningococcus Genome
Library (MRF-MGL) is a repository of WGS of all culture-
confirmed meningococcal isolates from 2010 onwards,
publicly available through PubMLST.org/neisseria”’. Here, some
examples of how genomic epidemiology has informed preventa-
tive strategies for infections caused by N. meningitidis will be
outlined.

Genomic epidemiology of N. meningitidis
Transmission dynamics

Learning from carriage studies. As acquisition is the
prerequisite of invasive disease, it is crucial to understand the
asymptomatic transmission cycle of the meningococcus and the
impact of preventative interventions on herd immunity. The UK
meningococcal C vaccine programme, introduced in 1999,
was successful by inducing both direct and indirect protection,
reducing nasopharyngeal carriage of serogroup C and genogroup
C meningococci’’. This was the first demonstration of how
MLST could be employed at scale in carriage studies for pre- and
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post-vaccine surveillance”. Subsequently, serogroup B disease
has persisted, caused by multiple ccs, although rates of disease
have been declining naturally since 2000. A large follow-up
carriage study of UK adolescents was done in 2014/15 to assess
whether this reduction in disease was associated with rates of
meningococcal carriage.

Neisseria species interactions. The factors determining progres-
sion from nasopharyngeal carriage to invasive disease remain
incompletely understood, and it is possible that interactions
with other Neisseria species are important. To further investi-
gate this area, WGS enabled the development of an accurate,
rapid, portable, and affordable method of Neisseria species
identification. Ribosomal MLST (rMLST) produces highly
accurate species and subspecies identification but requires data
from 53 loci, optimally generated by WGS*. For use in the
MenAfriCar study, WGS data were used to identify a single
413-base pair fragment of the rplF gene, the sequence of which
generates results consistent with those from rMLST”. The
rapid and cost-effective rplF assay identified 10.2% carriage
of Neisseria spp., with point prevalence of Neisseria lactamica
5.6%, N. meningitidis 3.6%, Neisseria polysaccharea 0.6%,
Neisseria bergeri 0.2% and Neisseria subflava 0.05% in the
African meningitis belt, which varied markedly by country
(Figure 4)’7. N. lactamica was carried at the highest rate of
14.1% by 1- to 4-year-olds, and N. meningitidis was carried at
the highest rate of 5.2% by 5- to 14-year-olds®. Furthermore,
there was a mean 4.7-year delay in acquisition of N. meningitidis
following N. lactamica carriage”. Although the underlying
mechanisms are yet to be elucidated, this observation has
implications for intervention strategies. Since 2010, the PsA-TT
vaccine has been progressively implemented across the African
meningitis belt, and there has been a dramatic reduction in hyper-
epidemic meningococcal disease and carriage in vaccinated and
unvaccinated individuals™.

Manipulating the nasopharyngeal niche. The age-specific rate
of meningococcal carriage and invasive disease is inversely pro-
portional to the rate of colonisation with harmless N. lactamica,
and alternative prophylactic strategies that exploit this obser-
vation have been proposed’~*. For example, nasal inoculation
with live N. lactamica has been investigated in UK university
students. New colonisation with N. lactamica occurred from
two weeks after inoculation, and carriage of meningococci fell
from 24.2% (n = 36/149) to 14.7% (n = 21/143) (P = 0.006) in
those individuals carrying N. lactamica®. This effect may be
due to displacement of resident N. meningitidis soon after colo-
nisation with N. lactamica, or in those not colonised with either
Neisseria spp. at baseline, the colonisation with N. lactamica
might inhibit meningococcal acquisition. There remained a group
of study participants persistently colonised with N. meningitidis
despite N. lactamica challenge, suggesting that displacement can
be inhibited. The serogroup distribution was not characterised, so
it is not known whether this effect was related to all serogroups;
however, the effect was seen across ccs*.

Extent of capsular group B vaccine coverage

Estimating protein-based ‘serogroup B substitute’ vaccine
coverage. The serogroup B polysaccharide capsule is poorly
immunogenic and shows structural similarity to human tissue,
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Figure 4. Distribution of Neisseria species from pharyngeal carriage across the meningitis belt in sub-Saharan Africa. The proportions
of the different species vary markedly in these cross-sectional carriage surveys, which investigated seven countries across the belt. These
studies analysed carriage of individuals by age group: 0-4 years, 5-14 years, 15-29 years and 30 or more years. Crosses indicate the
sampling area for the respective countries. Figure reproduced unchanged under CC BY*.

raising safety concerns. Protein-based ‘serogroup B substitute’
vaccines, including 4CMenB (Bexsero®, GlaxoSmithKline) and
bivalent rLP2086 (Trumenba®, Pfizer), were developed to address
this issue. In September 2015, 4CMenB vaccine Bexsero®
was introduced for infants in the UK immunisation schedule at
2, 4, and 12 months of age. This vaccine contains multiple sub-
capsular proteins, including factor H-binding protein (fHbp),
Neisserial heparin binding antigen (NHBA), Neisseria adhesin
A (NadA), and an outer membrane vesicle (OMV) containing
Porin A (PorA). Efficacy of these vaccines must be considered in
terms of host immunogenicity and strain coverage. Owing to the
practical constraints of performing multiple serum bactericidal
assays (SBAs), the accepted correlate of protection for menin-
gococcal vaccines, alternative assays were devised to estimate
coverage. Meningococcal strain coverage estimates for England
and Wales were 73% (95% confidence interval [CI] 57-87%)
using the Meningococcal Antigen Typing System (MATS)Y.
MATS assesses potential immunological cross-reaction of menin-
gococcal isolates but (i) can be performed by specialist labora-
tories only, (ii) is expensive and time- and labour-intensive, and
(iii) relies on pooled infant serum. Genomic analysis can be used
to measure vaccine antigen prevalence using Bexsero® Antigen
Sequence Typing (BAST), implemented on PubMLST.org/
neisseria’®. Analysis of a collection of 2016 UK isolates, com-
prising all serogroups from 2010/11 and 2013/14, estimated
coverage between 22.8 and 30.8%, increasing to 58.3—60.3% when
potentially cross-reactive antigens were included””. A geno-
type-phenotype association using the seven MLST loci to predict
MATS coverage of serogroup B isolates estimated 66%
coverage, the same as a subsequent revision of MATS coverage
for contemporaneous isolates (2014/15)*%.

Estimating the breadth of coverage is equally problematic for the
other licenced vaccine, bivalent rLP2086. The Meningococcal
Antigen Surface Expression (MEASURE) assay was established

to estimate potential coverage by using fHbp surface expression
levels, measured by flow cytometry with monoclonal antibody
binding to conserved epitopes of fHbp found in both subfamilies
contained in the vaccine. Surface expression had previously
been identified as the best predictor of susceptibility of strains in
SBAs®*. A limitation of both MATS and MEASURE assays
is the diversity of disease-causing meningococci. However, this
can be appreciated with genomic analysis using large databases
such as PubMLST.org/neisseria, and publicly available tools
can be used to identify the presence of bivalent rLP2086 fHbp
variants and cross-reactive antigens in regions where vaccines are
being assessed for implementation or in outbreak settings.

Pre- and post-vaccine surveillance. A pre-vaccine genomic
surveillance study identified the prevalence of Bexsero® antigenic
variants to be very low among 3,073 UK disease isolates: fHbp
1, 13.4%; NHBA 2, 13.8%; NadA 8, 0.8%; and PorA-VR P1.4,
10.9%"'. This suggested that if the vaccine is to be effective, it
would need to be through cross-protective immune responses or
through alternative mechanisms involving other OMV proteins,
which are poorly understood to date. Consequently, ongoing
surveillance is necessary to monitor the secular changes in cc
distribution that underlie changes in antigenic variant prevalence,
to inform possible vaccine reformulation.

Ten months after vaccine implementation, Bexsero® efficacy was
estimated at 82.9% with very wide CIs (95% CI 24.1-95.2)*.
Two years after implementation, disease in the cohort of infants
vaccinated with high uptake (92.6%) in 2016/17 represented
12% of the serogroup B burden compared with 19% in 2015/16,
when they would not have been fully protected, and 24% in 2014/15
pre-vaccine implementation”. At that time, it was difficult to
disentangle vaccine benefit from natural variation in disease rate as
serogroup B, C, and Y disease all decreased in 2016/17 compared
with 2015/16 on an overall downward trend for over a decade*.
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Capsular group B vaccines and carriage. Owing to its uncertain
impact on carriage, Bexsero® has been limited to infants in the
UK and Ireland national immunisation programmes. If meningo-
coccal carriage were eliminated by vaccination, herd immunity
could prevent disease in other age groups, improving vaccine
cost-effectiveness. Observations from a US university outbreak
suggested that vaccination did not eliminate carriage. A close
contact of individuals who had been vaccinated with two doses of
Bexsero® acquired the same outbreak strain and died; however,
such anecdotal data cannot be regarded as conclusive*. The
largest study to date, of 2,968 UK university students,
comparing Bexsero® with ACWY vaccine and unvaccinated
controls, demonstrated a modest effect of Bexsero® on carriage
of all N. meningitidis with 18.2% (95% CI 3.4-30.8) reduction
and on serogroup B disease-associated STs with 12.6% (95%
CI -15.9-34.1) reduction at least three months after vaccination®.
At the time of writing, multi-centre carriage studies were
under way in South Australia and the UK to address the impact
of protein vaccines on meningococcal carriage. Genomic
techniques were being used to capture population structure
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of carried meningococci in adolescents before and after targeted
vaccination with Bexsero® and Trumenba®.

Emergence of new strains

Expansion of serogroup W South American/UK strain. Serogroup
W, ccll disease outbreaks were first reported in 2000,
associated with the Hajj pilgrimage, but following targeted
vaccination programmes, disease decreased®. Since 2009-10,
however, there was a steady increase in serogroup W cases
globally. Genomic epidemiological studies identified the
organism responsible as belonging to lineage 11.1 but distinct
from a closely related strain associated with the Hajj pilgrim-
age. This epidemic strain was first seen in South America and
subsequently spread worldwide (Figure 5). WGS analysis of
MRF-MGL isolates showed that most UK disease after 2013
was due to a new sub-strain varying by only 30 loci, likely
due to HGT, indicating microevolution of the aggressive
genotype®. The disease caused by this strain has been particu-
larly severe, affecting all age groups with atypical manifestations,
including gastrointestinal symptoms, pneumonia, septic arthritis,
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Figure 5. Geotemporal distribution of lineage 11.1 serogroup W isolates in global collections. The inset panel shows a Neighbour-net
phylogenetic network of sublineage 11.1 and the distribution of capsular groups within it. Global disease isolates with serogroup W capsular
antigens have been analysed by using the meningococcal core genome (cgMLST, consisting of 1,546 loci) and visualised with a Neighbour-
net network in the main figure, allowing high-resolution discrimination between isolates. The South American/UK strain has been expanding
since 2012 and is seen to be distinct from the Hajj strain. Figure reproduced unchanged under CC BY*'.
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and epiglottitis/supraglottitis in addition to septicaemia and
meningitis*~'. In response to this outbreak, conjugate menin-
gococcal ACWY vaccine was introduced into the UK immunisa-
tion schedule in August 2015 for adolescents, historically those
with the highest carriage. A modest reduction in carriage of
serogroups C, W, and Y—from 36.2 to 33% (CI 15.6-51.7)—
was seen at least two months after conjugate ACWY vaccina-
tion amongst UK university students®. Although this effect on
carriage is relatively limited, this may impact on disease incidence
due to reduction in acquisition rates.

Conclusions

Genomic epidemiology of disease-causing bacteria has far-
reaching implications for promoting human health and preventing
disease. The ability to perform such studies has been acceler-
ated with increasing ease, rapidity, and affordability of WGS.
This simultaneously presents challenges to develop methods
for distributing and analysing these data for non-specialists.
In the case of bacterial meningitis and related diseases,
S. pneumoniae and N. meningitidis have been extensively studied
by WGS, and studies of the meningococcus have increased
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our understanding of carriage, transmission, interactions with
commensal Neisseria and the distribution of vaccine antigens
in national surveillance and emergent organisms. This infor-
mation has helped to shape vaccination strategies worldwide,
ultimately reducing the burden of this devastating disease.
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